Lowell Observatory Bistro Mug

Regular Price:

$12.00
OR
  • DESCRIPTION
  • REVIEWS
  • Cobalt blue ceramic bistro style mug with white stars. "Lowell Observatory" is printed in white on one side, and "Flagstaff, AZ lowell.edu" is printed on the back in white.

    Ceramic mug
    16 oz
    Dishwasher safe
    Microwave safe

    This star studded mug pays tribute to some of the amazing research being conducted at Lowell Observatory:
    Thirty years ago, stimulated by the new knowledge that the Sun’s brightness variations over the 11-year solar cycle were less than 0.1 percent, Wes Lockwood, Brian Skiff, and their colleagues began a systematic photometric study of the small brightness fluctuations of sunlike stars of various ages. Using the 21-inch telescope and a dedicated photometer, Brian Skiff observed several dozen sunlike stars for 16 consecutive seasons, finding that a majority of sunlike stars have detectable year-to-year variations from as small as 0.3 percent to several percent; (2) the amount of variability decreases with increasing stellar age.

    Wes, Jeff Hall, Brian Skiff, and Len Bright have also observed these stars spectroscopically since 1994 using Lowell’s Solar-Stellar Spectrograph, an instrument fed by an optical fiber from a solar feed and from the 1.1-m J. S. Hall telescope at Anderson Mesa. It is intended to characterize the magnetic activity of these stars and the Sun on the timescale of the 11-year solar cycle.

    Phil Massey, Kathryn Neugent, and their collaborators use telescopes in Chile and Arizona (including Lowell Observatory's Discovery Channel Telescope) to try to better understand massive star evolution. The nearby galaxies of the Local Group (such as the Magellanic Clouds and the Andromeda Galaxy) serve as their astrophysical laboratories for these studies. Stellar evolution is the study of how stars change with age. A star like the sun will burn hydrogen in its core for about about ten billion years before expanding into a red giant (engulfing the Earth) and eventually evolving to a white dwarf star. Stars with masses greater than 8 times the mass of the sun start their lives as hot OB stars, and end their lives in spectacular outbursts called core-collapse supernovae. In between these stars undergo phases as Luminous Blue Variables (such as Eta Carina and S Doradus), yellow supergiants (such as Canopus), red supergiants (such as Betelgeuse), and/or Wolf-Rayet stars, all depending upon their initial mass and composition.
    The evolution of massive stars is particularly hard to model. Because they have very high luminosities (in some cases more than a million suns!) radiation pressure removes the outer layers of these stars. Yet, understanding the evolution of such stars is important, not only in its own right, but also to answer such basic questions as where the elements that make up our universe come from. (The carbon, oxygen, and nitrogen atoms in your body were all made in the cores of massive stars.)
    Source: https://lowell.edu

  • Write A Review For Lowell Observatory Bistro Mug

    How do you rate this product? *

    • Quality